ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-C20
会議情報
1A1-C20 リカレントニューラルネットワークを用いたロボットハンドによる動的センシング
岩瀬 智紀細田 耕白藤 翔平
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper describes learning of robust haptic recognition by Bionic Hand, a human-like robot hand, through dynamic interaction with the object. Bionic hand is a human-like hand that has soft skin with distributed receptors and is driven by artificial pneumatic muscles. At the beginning of learning, it utilizes the result of physical interaction with the object: thanks to the hand compliance, regrasping will leads object's posture to stable one in the hand. This result can be successively used as object classification for learning dynamic interaction beetween the hand and the object by a recurrent neural network. We conduct experiments and show that the proposed method is effective for robust and fast object recognition.
著者関連情報
© 2010 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top