ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-E05
会議情報
2A1-E05 確率重み付きARXモデルに基づく追従行動モデルを用いたモデル予測型ブレーキアシストシステムの提案
奥田 裕之伊神 範光三上 晃司田崎 勇一鈴木 達也
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper presents a personalized driver assisting system that makes use of the driver's behavior model. The Probability-weighted ARX (PrARX) model which is a type of hybrid dynamical system models is introduced as a model of driving behavior. A PrARX model that describes the driver's vehicle-following skill on expressways is identified using a simple gradient descent algorithm from actual driving data collected on a driving simulator. The obtained PrARX model describes the driver's logical decision making as well as continuous maneuver in a uniform manner. Finally, the optimization of the braking assist is formulated as a mixed-integer linear programming (MILP) problem using the identified driver model, and computed online in the model predictive control framework.
著者関連情報
© 2010 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top