ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-L01
会議情報
2P2-L01 HLACとHOGの連携による頑健な人物検出(デジタルヒューマン)
森田 美帆溝口 博竹村 裕Ming DING
著者情報
会議録・要旨集 フリー

詳細
抄録
In this paper propose a robust human detection system based on combined with Higher-order Local Auto-Correlation (HLAC) features and Histograms of Oriented Gradients (HOG) features. HLAC features are invariant to shift. HOG features are robust to change illumination. To combine these two features, we use the co-occurrence of multiple features which contained HLAC and HOG. The co-occurrence features are generated by the Real AdaBoost. We conduct human detect experiments using INRIA database. Beside we confirm influence of changing the number of training images. The experiment results show that the propose method is more effective than the conventional method, and suggest that the there are the optimal numbers of training images.
著者関連情報
© 2011 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top