ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A2-B10
会議情報
1A2-B10 病理診断支援システムのための複数特徴量と識別器を利用したがん領域検出に関する研究(医療ロボティクス・メカトロニクス(2))
石川 拓海高橋 潤子竹村 裕溝口 博桑田 健
著者情報
会議録・要旨集 フリー

詳細
抄録
Cancer is the most cause of death in Japan, and patients suffering with and who die of cancer are increasing every year, while the number of pathologists is almost constant. In this paper, an automatic cancer detection method that combines multiple features to support pathologists is presented. We use three features, Higher-order Local Auto- Correlation (HLAC) feature, wavelet feature, delaunay feature. At first, features are calculated from gastric lymph node image. Then we combine features, and distinguish cancer and non-cancer area using Support Vector Machine (SVM). HLAC, wavelet and delaunay feature is shape, frequency, and nuclear-position geometrical characteristics respectively. Combination of all three features is the best accuracy rate, and its sensitivity and specificity are 94.6% and 84.9% respectively. Accuracy rate that combines more two features is better than only one feature.
著者関連情報
© 2013 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top