ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-B03
会議情報
1P1-B03 再帰型神経回路モデルを用いた引き込みによる適応的な行為生成(脳・神経・認知ロボティクス)
有江 浩明野田 邦昭菅 佑樹谷 淳尾形 哲也
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper describes a novel dynamical neural network model for learning and generating object manipulation behavior. The network learns to predict not only the mean of the next input state, but also its timedependent variance. The training method is based on maximum likelihood estimation by using the gradient descent method, and the likelihood function is expressed as a function of the estimated variance. Regarding the model evaluation, it was shown that a humanoid robot with the proposed network can learn multiple behavior of object manipulation and adaptively select trained behavior in accordance with the environmental changes.
著者関連情報
© 2013 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top