ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 3P2-P03
会議情報
3P2-P03 Deep neural networkを用いた感覚運動統合メカニズムによるヒューマノイドロボットの物体操作行動認識(脳・神経・認知ロボティクス)
野田 邦昭有江 浩明菅 佑樹尾形 哲也
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper presents a novel computational approach for recognizing object manipulation behaviors by a humanoid robot. A time-delay deep autoencoder is applied for acquiring multimodal feature vectors from multiple behavior patterns represented with visuomotor temporal sequences. Thanks to the high generalization capability of the deep autoencoder, our proposed mechanism successfully generates reliable feature vectors even when motion pattern inputs are deteriorated with noise. Our experimental results demonstrate that the acquired multimodal feature vectors relieve degradation of behavior recognition performance by utilizing the visual information accompanied with the motion pattern inputs in a complementary manner. Moreover, even if the motion pattern inputs are only available, our proposed multimodal integration mechanism succeeds in generating reliable feature vectors by internally retrieving the accompanied visual information.
著者関連情報
© 2014 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top