ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P2-O06
会議情報
1P2-O06 物体のサイズや形状の変化を対象とするロボットハンドの操り能力向上を目指したDeep Learningによる特徴抽出
船橋 賢佐藤 高志Alexander Schmitz菅野 重樹
著者情報
会議録・要旨集 フリー

詳細
抄録
This paper presents feature extraction by deep leaning for in-hand manipulation. In the aging society, Robots which have versatile hands to manipulate different sizes and shapes of objects are required. In order to achieve robust in-hand manipulation, the current touch state has to be taken into account. But modeling of the contact states like multiple contacts and complex shapes of the object or the fingertip is difficult. So, machine learning was used for in-hand manipulation. However, information from touch states including redundant information is hard for machine learning to adapt to manipulation with different sizes and shapes of objects. We used feature extraction by deep learning to extract important information for in-hand manipulation.
著者関連情報
© 2015 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top