抄録
This paper presents robust stabilization of a powered paraglider and its application to aerial shooting experiments. By considering uncertainties for aero-dynamics of a canopy, we construct two kinds of nonlinear models that correspond to the longitudinal and lateral motions. Two robust controllers for the longitudinal and lateral motions with the uncertainties are separately designed using a linear matrix inequality based design. The designed controllers guarantee the stability of the closed loop systems for the longitudinal and lateral motions with the uncertainties. The experimental results demonstrate the utility of the robust controller design and realization of the aerial shooting tasks.