ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-03b4
会議情報

前腕筋電位に基づく手指動作識別技術
浦田 幸尚土谷 大輔泉 清高辻村 健
著者情報
キーワード: Learning, Genetic Programming
会議録・要旨集 フリー

詳細
抄録

The authors attempt to estimate finger gesture only by biological signals of forearm, because finger motion of human being affects not only finger muscles but forearm muscles. It is necessary but difficult to relate the forearm muscle activity to the finger gestures. This paper studies identification of finger movement based on myoelectric signals of the forearm skin surface. Genetic programming technique helps us to automatically generate the algorithm to estimate finger shapes by learning characteristics of muscle activation. We examined the influence of several genetic programming parameters such as Crossover rate, Mutation rate, Population size, and Target number of nodes to establish the optimum identification.

著者関連情報
© 2016 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top