ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P2-H09
会議情報

各目的のCriticのうち最大TD-errorを用いてActorを更新する多目的強化学習
*長峰 大智山田 和明
著者情報
会議録・要旨集 認証あり

詳細
抄録

Multi-agent system (MAS) is constructed by many autonomous agents. Conflicts occur in MAS because of complex interactions among many agents. An agent needs to carry out a task and to avoid conflicts at same time. That is, each agent has to achieve the contradicting purposes. Therefore, this paper proposes a new approach by using multi-objective reinforcement learning as decision making system of an agents. We investigate the efficiency of the proposed approach through a simulation experiment that two agents pass each other in the narrow path.

著者関連情報
© 2019 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top