ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-H06
会議情報

点群深層学習による複数物体の位置姿勢推定
*戸田 幸宏千葉 直也橋本 浩一
著者情報
会議録・要旨集 認証あり

詳細
抄録

6D pose estimation is an important task in the research field of robot vision. Pose estimation is used in picking task in industrial scene. the previous study shows that the pose estimation can be performed by deep learning if the scene is only a single object. In industrial applications, it is necessary to perform tasks in scenes multiple objects are placed in disorder. In multiple objects scene, each object must be identified from the scene, and pose estimation performed separately. In this paper we design a neural network that estimates multiple objects at the same time. Using an object clustering module, the network became possible to learn scenes of multiple objects.

著者関連情報
© 2019 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top