ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-G06
会議情報

予測を利用した強化学習エージェントによる競技型接触インタラクション
*野田 裕貴西川 鋭新山 龍馬國吉 康夫
著者情報
会議録・要旨集 認証あり

詳細
抄録

Though there are a lot of researches about Physical Human-robot Interaction (pHRI) using prediction, few researches work on inducing the opponent’s action or outwitting the opponent. We made the push-hand game environment in order to focus on generating strategic actions and tried to make reinforcement learning agents to learn these actions by adding rewards which are directly proportional to the degree of inducement (induction reward) or the degree of outwitting (outwitting reward), defined in this research. As a result, we demonstrated that the induction reward decreases the agent’s predictive error and the outwitting reward increases the opponent’s predictive error, and both of them didn’t contribute to the winning percentage.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top