ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-A11
会議情報

深層学習を用いた実ロボットの反射動作学習
日立-早大の共同研究開発事例
*伊藤 洋山本 健次郎森 裕紀尾形 哲也
著者情報
会議録・要旨集 認証あり

詳細
抄録

A motion generation method using deep learning has been proposed that is robust against various environmental changes. In this paper, we describe a reflection motion method that responds immediately to environmental changes. The reflection motion can be developed using a simple feed-forward neural network. The tasks of verifying the reflex movement were ”grip force control” that grips various objects without crushing them, and ”obstacle avoidance” that avoids unknown objects during autonomous movement. Results of an experiment using a real robot confirmed a reflection motion could be generated.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top