ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A2-J10
会議情報

深層学習による水族館定点カメラ画像からの水の透明度判定
*郭 一凡西村 究野口 渉飯塚 博幸山本 雅人
著者情報
会議録・要旨集 認証あり

詳細
抄録

Aquariums have the task of water clarity testing for regular water exchange. Water clarity can indeed be detected by chemical reagents or special equipment, while the method is very tedious and complicated. Recently, artificial intelligence has been put to practical use in society, and it can contribute to the efficiency of water exchange using Deep Learning algorithms. In this research, we confirmed that water transparency can be determined using Convolutional Neural Networks, and that the water transparency determination achieved more correct answers better than the human eye. It was shown that a majority decision could improve the accuracy compared to classifying a single image.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top