ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-K14
会議情報

LiDARを用いた自己位置推定における潜在変数全結合型のマルコフ確率場を用いたミスマッチ検出
*赤井 直紀平山 高嗣村瀬 洋
著者情報
会議録・要旨集 フリー

詳細
抄録

This paper presents a misalignment recognition method using a Markov random field with fully connected latent variables for LiDAR-based localization. The major difficulty for the misalignment recognition is that considering entire relation of sensor measurement in localization is impossible because it must be assumed that the sensor measurement is independent to one another. The presented method enables to consider the entire relation via the fully connected latent variables. This paper also presents a calculation method of localization failure probability based on the misalignment recognition. Experiments show that the presented method can exactly detect misalignment even though partial sensor measurement overlaps with a map and can exactly recognize success and failure localization results.

著者関連情報
© 2020 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top