ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-F01
会議情報

不定形物体ピッキングのためのセグメンテーションの学習方法における検討
*川西 亮輔櫻井 絵梨子木村 元紀岡 弘之坂本 義弘
著者情報
会議録・要旨集 認証あり

詳細
抄録

In the field of robotics, robotic bin picking has been studied extensively. In this paper, we consider an irregularly shaped object as a grasping target. For detecting irregularly shaped objects, instance segmentation based on deep learning is one of the promising methods. One of the challenges for deep learning-based methods is how to reduce the time and effort to prepare the dataset for training. In this paper, we propose a method to automatically generate a dataset for learning instance segmentation using only information available from public image databases. The proposed method achieves mean average precision (mAP) of 0.85 for the automatically generated test data. It also showed mAP of 0.65 for the test data generated using untrained irregularly shaped objects, and achieved a success rate of more than 98% in picking experiments with the robot.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top