ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-I01
会議情報

変分自動符号化器を用いた潜在状態空間上の運動計画
*谷口 明日斗佐々木 史紘山科 亮太
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper proposes motion planning in low-dimensional space, so-called latent state space, embedded by variational autoencoder. We hypothesize that the path passing latent states with high likelihood works as motion planning. Assuming latent states follow the normal standard distribution, finding the path can be seen as a two-point boundary value problem of an ordinary differential equation. Then, the proposed method makes an agent follow the path by a policy pre-trained by reinforcement learning. We evaluated the proposed method in simple maze environments and found that the proposed method works well for long-horizon tasks and has a low computational cost.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top