ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-I06
会議情報

新たな環境へ少ない学習データで適応させる自律移動制御のためのメタ学習の検証
*片桐 敬太佐々木 史紘山科 亮太
著者情報
会議録・要旨集 認証あり

詳細
抄録

Imitation learning is one of the techniques for visual navigation in robotics. This technique enables robot to visual navigation by human demonstrations. However, in a different environment from demonstrations, evaluation of visual navigation based on a learned model often fail because domain that is distribution of dataset between demonstration data and test data is difference. In meta-learning, the goal of the trained model is to learn a new task from a few shot data. We apply a new task as a new domain in meta-learning to imitation learning of visual navigation. We evaluate not only meta-learning but also domain adaptation to visual navigation by imitation learning and clarify the problem.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top