ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P3-E04
会議情報

モデルベース強化学習により獲得される歩行運動に内在する脚協調構造
*吉田 高志チャイ ジアゼン沓澤 京大脇 大林部 充宏
著者情報
キーワード: Gait, Neural Network, Synergy
会議録・要旨集 認証あり

詳細
抄録

In the field of motor control, ”Synergy Hypothesis” is a concept that behaviors are constructed by a combination of the patterns of movement called synergy. A large number of studies have supported this hypothesis as an explanation for redundant body control in humans and animals. Although much research has been done on the concept of synergy, the mechanism of synergy generation remains still unknown. In this study, we generate gait by Model-Based Reinforcement Learning, which is a control framework utilizing a function like internal model in the human brain, and analyze the spatiotemporal synergy inherent in the generated gait. As a result, we found that walking speed and energy efficiency are important factors for synergy generation.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top