ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-N12
会議情報

GANによる配管内画像を用いた異常検知
*湯本 茂樹橘川 拓実モロ アレサンドロパトハック サーサク中村 太郎梅田 和昇
著者情報
会議録・要旨集 認証あり

詳細
抄録

In recent years, the number of pipes that have exceeded their service life is increasing. Therefore, earthworm-type robots have been developed to perform regularly inspections of sewage pipes. However, inspection methods have not yet been established. This paper proposes a method for anomaly detection from images in pipes using Generative Adversarial Network (GAN). A model that combines f-AnoGAN and Lightweight GAN is used to detect anomalies by taking the difference between input images and generated images. Subtraction images is used to estimate the location of anomalies. Experiments were conducted using actual images of cast iron pipes to confirm the effectiveness of the proposed method.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top