ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-T04
会議情報

人間の存在を考慮した深層強化学習により特定対象に追従する自律移動ロボット
*塚谷 将人土屋 一朗森岡 一幸
著者情報
会議録・要旨集 認証あり

詳細
抄録

This study introduces an action model for mobile robots that follows the specific walking human ahead of the robot and reaches destinations with the target human. The action model is trained by deep reinforcement learning in simulation environments including the target human. A conventional study of the authors shows that the training using 2D-LiDAR scan can provide action models for navigation to the destinations and following human flows. In this study, the robot distinguishes humans and the other static obstacles and distances to the human observed by the robot in addition to scan data are adopted as input state of the training. As the results, following of the specific human was achieved in the simple simulation environments.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top