ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-T07
会議情報

深層強化学習による単眼カメラ画像を入力とした移動ロボットの自律走行モデルの獲得
*鶴田 龍登堀内 響介森岡 一幸
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper introduces deep reinforcement learning to obtain action models for autonomous mobile robots in the simulation environment. The proposed robot system uses monocular camera images mounted on the mobile robot instead of 2D-LiDAR. Unity to create simulation environments and agents was adopted in this study. The training in Unity provides action models that the agents can reach the destinations in the environments using monocular camera images input. In addition, the trained models acquired in the simulation environment were adopted to a ROS-based navigation system in Unity.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top