ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-B04
会議情報

卓上アームロボットにおける吸着動作のSim-to-Real 深層強化学習に関する基礎的研究
*赤井 亮太
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this study, we propose a reinforcement learning method for motion instruction that aims to reduce the burden of learning on the actual robot. In this method, we construct a virtual environment for learning on a simulator, and the motion is instructed on the simulator as pre-training. The actual robot learns the motion based on the results of the pre-training. By utilizing the pre-training results, we aim to shorten the time required for learning on the actual robot and reduce the burden on the actual robot. As an example problem, we apply the proposed method to the picking motion using a vacuum suction cup of the desktop robotic arm. Through the application to the example problem, the feasibility and validity of the proposed method are basically investigated.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top