ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-H11
会議情報

シーングラフ分類器のためのグラフ誤りに頑健なシーングラフ表現の研究開発
太田 智也山本 稜悟奥口 穂香森下 裕大廣木 智栄*田中 完爾
著者情報
会議録・要旨集 認証あり

詳細
抄録

In this research, we have developed a new scene graph representation for scene graph classifiers. Scene graphs are powerful scene representations that can represent scene structure (semantic and spatial structure). Recent progress in Graph Convolutional Network (GCN) has enabled training of scene graph classifier. However, the effective scene graph descriptors for GCN have not been established yet. In this paper, we developed a new method of scene graph representation using local features (PatchNetVLAD) that are robust against graph errors. We verified the effectiveness of the proposed method by experiments using the NCLT dataset.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top