ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-C10
会議情報

Generative Adversarial Network を用いた触覚情報の合成において合成割合が生成結果に与える影響の検証
*笠井 惇矢石丸 嵩也嵯峨 智
著者情報
キーワード: Machine Learning, Haptics, GAN
会議録・要旨集 認証あり

詳細
抄録

In recent years, many tactile displays have been developed. Haptic displays based on tactile information obtained from actual textures have high reproducibility. However, since these contents reproduce tactile sensations based on recorded information, it is necessary to record tactile information from actual textures in order to extend the contents. To solve this problem, we propose a method to generate uncollected tactile information from existing tactile information using Generative Adversarial Network (GAN). In this paper, we generate new tactile vibration information by learning 3-axis acceleration information obtained from actual textures using GAN and combining two existing tactile information. By creating a spectrogram of the generated haptic information, we visually compared and verified the changes in features caused by the ratio and combination of the haptic information.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top