ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P2-T02
会議情報

マルチエージェント強化学習を応用したサッカーエージェントの行動生成
*松本 康希入江 清林原 靖男
著者情報
会議録・要旨集 認証あり

詳細
抄録

The objective of this study is to acquire behaviors for controlling multiple soccer robots using multi-agent reinforcement learning. For the experiments, we constructed a simulation environment for soccer using RoboCup Humanoid League as a reference, and used it as a base for future application to real environments. For the experiments, MA-POCA was used as the reinforcement learning algorithm. We also designed rewards to ensure that the robot learns to play soccer appropriately. As a result of learning, the soccer robot’s policy acquired behaviors necessary for soccer, such as dribbling, passing, and defense. This paper has contributed to the automation of the soccer robot’s behavioral decisions.

著者関連情報
© 2022 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top