ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A1-H01
会議情報

Visual Teach & Repeat Navigationにおける画像マッチングのオフライン評価
*谷口 明日斗佐々木 史紘山科 亮太
著者情報
会議録・要旨集 認証あり

詳細
抄録

Visual Teach & Repeat Navigation (VT&R) is a traditional way to let a mobile robot navigate without explicit localization. Most VT&R methods perform image matching between images, which the robot obtained while operated by a human (teaching process) and while running by itself (repeating process), in various ways including classical image processing and deep learning. In this paper, we investigate how the image matching methods work when considering outdoor VT&R scenarios with extreme appearance changes of environments. Our offline experimental results suggest that deep feature point extraction and matching techniques such as SuperPoint [1] and SuperGlue [2] help accurate repeat navigation even if illumination condition drastically changes from teaching process.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top