ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1A2-F27
会議情報

機械学習を用いた物理振子群の同期ダイナミクス予測
*田中 裕人沓澤 京大脇 大林部 充宏
著者情報
会議録・要旨集 認証あり

詳細
抄録

The synchronization phenomenon refers to the gradual synchronization of simple elements with different rhythms due to mutual influence and is observed across various fields, e.g., natural sciences to humanities and social sciences. Synchronization can be observed at various levels in the human brain, for example, epilepsy due to the abnormal synchronous firing of neurons, resulting in functional behaviors. Predicting and analyzing synchronization dynamics could be important for inducing or preventing functional behaviors of synchronization. However, most studies on synchronization have focused on complex oscillator systems, and few have predicted and analyzed the synchronization of basic pendulums using machine learning. In this study, we reproduce the synchronization of pendulums in a physics simulation with an easy condition setting and use machine learning to predict how the dynamics change under various conditions. We investigate which machine learning model is best for predicting synchronization phenomena.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top