ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A2-F27
会議情報

自動生成した歩行者を含む都市型シミュレーション環境における深層強化学習による移動ロボットの自律走行モデルの獲得
*五月女 啓森岡 一幸
著者情報
会議録・要旨集 認証あり

詳細
抄録

This paper presents an acquisition method of autonomous navigation models for mobile robots by deep reinforcement learning in the game engine Unity. In this study, the mobile robots are required to reach goals in virtual urban environments while avoiding pedestrians using only a monocular camera and positional information, without using any 3D range data from laser sensors. The navigation models are trained by performing reinforcement learning based on Proximal Policy Optimization and input images to predict the pedestrians’ movements including last five frames. As a result of curriculum learning, the robot was able to reach goals at a rate of more than 80% in both of the navigations on the sidewalk and in crosswalks.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top