ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-B16
会議情報

人工知能援用による卵巣腫瘍術前診断支援システムの開発
*稲葉 大樹小泉 憲裕武笠 杏樹小野寺 佑輔佐々木 夏穂國島 温志後藤 万由子村松 令糸生池田 芳紀
著者情報
会議録・要旨集 認証あり

詳細
抄録

It is difficult to diagnose benign, borderline, or malignant nature of ovarian tumors preoperatively. Problems often arise because physicians determine the extent of resection based on presumed diagnosis. There is an urgent need to improve the accuracy of preoperative diagnosis. In this study, we developed a three-level classification system for serous ovarian tumors using blood test data and machine learning. The effectiveness of combining data sets and training models was examined by learning and estimating for four different data sets and a control group using three different models: random forest, logistic regression analysis, and linear SVC. The results showed that only LR-D4 outperformed the control group in all categories, but other combinations improved in some category. This suggests that the content and combination of the data set are effective in improving precision and specificity of the estimation.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top