ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-D11
会議情報

羽ばたき型UAVの強化学習制御における効果的な探索法の検討
*平井 健太郎齋藤 未来李 直謝 砺鋒笹崎 舜翔渡邉 孝信
著者情報
会議録・要旨集 認証あり

詳細
抄録

We conducted investigation into an effective scheduling method of the exploration in a reinforcement learning algorithm, aiming at the control of a flapping unmanned aerial vehicle (UAV) we have developed. Deep Q Network (DQN) algorithm was employed to determine optimal gain parameters of PID control of the Yaw angle of the airframe. Although the Yaw angle can be stabilized by this PID-DQN hybrid method, we noticed that the gain parameters tend to be biased toward highly rated values in the early stages of the learning. In this study, we solved this problem by modifiying the scheduling of epsilon-greedy method in DQN.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top