ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2P1-G09
会議情報

スパイク表現を用いた深層強化学習による四脚ロボットの歩容生成
*瀬戸 崚生沓澤 京大脇 大林部 充宏
著者情報
会議録・要旨集 認証あり

詳細
抄録

Quadruped robots are promising mobile robots for practical applications due to their higher locomotor ability in adverse conditions such as construction and disaster sites. In recent years, previous studies have proposed many methods for controlling legged robots using deep reinforcement learning. Additionally, spiking neural networks (SNNs), which use spike representations of a neuron model, have gained attention due to their robustness against noise. In this study, we apply SNNs to deep reinforcement learning to generate the gait of a quadruped robot in a simulation. Moreover, we verified the robustness of the learned gait patterns against sensor noise.

著者関連情報
© 2023 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top