ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 1P1-R10
会議情報

欠損ノイズが再現可能なSim2RealによるLiDARセグメンテーション
*宮脇 智也中嶋 一斗劉 瀟文岩下 友美倉爪 亮
著者情報
キーワード: Deep Learning, LiDAR, Sim2Real
会議録・要旨集 認証あり

詳細
抄録

In 3D scene understanding tasks using LiDAR data, constructing training data poses a challenge due to its high annotation cost. To this end, annotation-free simulator-based training has recently been gaining attention, while the domain gap between simulators and real environments often leads to decreased generalization performance. This paper introduces a Sim2Real domain adaptation method that mitigates the domain gap by reproducing realistic raydrop noise onto labeled simulation data using deep generative models, enhancing its applicability to real-world scenarios. We demonstrate the effectiveness of our approach in multiple segmentation tasks.

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top