ロボティクス・メカトロニクス講演会講演概要集
Online ISSN : 2424-3124
セッションID: 2A1-R04
会議情報

RNNを用いたハイドロゲル4Dプリンティングのモデリング
―短いモデルの変形を基づいた、長いモデルの変形予測―
*徐 一凡王 忠奎王 梦涛孟 林
著者情報
会議録・要旨集 認証あり

詳細
抄録

This study proposes a method to reduce the simulation time of the deformation of 4D printed hydrogel models using deep learning. In the proposed method, first, 4000 hydrogel models with the same shape but different expansion ratio distributions were created using Abaqus, and deformation simulations were conducted using the Abaqus thermal expansion approach. Next, from the simulation results, coordinates of 400 reference points on the edges of the deformed models were collected, and a dataset was created. Finally, the deformation of long hydrogels under the same load conditions was predicted based on the dataset from the deformation of short hydrogels using Recurrent Neural Network (RNN).

著者関連情報
© 2024 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top