交通・物流部門大会講演論文集
Online ISSN : 2424-3175
セッションID: SS5-2-4
会議情報

機械学習を用いた輸送障害時の旅客流動予測モデルの開発
*山城 昌雄大塚 理恵子佐原 亨川崎 健志坂入 整
著者情報
会議録・要旨集 認証あり

詳細
抄録

When a train service disruption happens, dispatchers make a train rescheduling plan to control train delay and congestion. To support dispatcher's work, we developed a passenger flow prediction model during disruption using machine learning techniques. The proposed model consists of time-series waveform prediction using LightGBM and rule-based correction. We defined 5 time series waveform clusters using unsupervised learning with dynamic time warping(DTW). As a result, we verified prediction average accuracy 75% about 4 cases of unlearned disruptions.

著者関連情報
© 2021 一般社団法人 日本機械学会
前の記事 次の記事
feedback
Top