材料力学部門講演会講演論文集
Online ISSN : 2433-1287
会議情報
720 繊維複合材料のクリープ特性評価に関するニューラルネットワークモデルの検証
渋谷 嗣
著者情報
会議録・要旨集 フリー

p. 539-540

詳細
抄録
Thermoplastic matrix of the composite has time-temperature dependent properties. For nonlinear properties of the matrix, a neural network model is used to represent those complex properties. The time-temperature superposition principle is known in viscoelastic properties, it is used to verify a neural network model. A homogenization theory with two-scale asymptotic expansion is used to homogenize the creep properties of the composite. Effective constitutive equations and microscopic disturbed displacements are derived from the homogenization theory. In numerical calculations, the effective creep compliance of the composite is determined by using the homogenization theory and predicted creep property of the matrix by neural network.
著者関連情報
© 2003 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top