Abstract
Although serotonin (5-hydroxytryptamine, 5-HT) has been found to be a potent vasoconstrictor, a pivotal role of 5-HT in the control of appetite and mood control by the modulation of neuronal synapse has also been proposed. Selective 5-HT reuptake inhibitors (SSRIs) are frequently used to suppress appetite and treat depressive disorder, and the target protein of SSRIs is the 5-HT transporter (5-HTT) in the neuronal synapse. However, SSRIs may increase the free 5-HT concentration in circulating blood because platelets and vascular smooth muscles express functional 5-HTT. In addition, enhanced vasoactive action of 5-HT and alterations in 5-HT receptor subtypes have been reported in some types of hypertension. Therefore, we can infer that the use of drugs such as SSRIs in some hypertensive patients is potentially risky. Altered functional expression of ion channels in vascular smooth muscle is suggested to be a mechanism for the enhanced vasoconstriction by vasoactive agonists, including 5-HT. In this brief review, we compared the electrophysiological properties of mesenteric artery myocytes and their modulation by 5-HT between sham-operated control and deoxycorticosterone acetate (DOCA)-salt hypertensive rats.