Journal of Smooth Muscle Research
Online ISSN : 1884-8796
Print ISSN : 0916-8737
ISSN-L : 0916-8737
Original
Ca2+ dependent but PKC independent signalling mediates UTP induced contraction of rat mesenteric arteries
Fouzia PanhwarRichard D RainbowRobert JacksonNoel W Davies
Author information
JOURNAL FREE ACCESS

2015 Volume 51 Pages 58-69

Details
Abstract
Uridine triphosphate (UTP) can be released from damaged cells to cause vasoconstriction. Although UTP is known to act through P2Y receptors and PLC activation in vascular smooth muscle, the role of PKC in generating the response is somewhat unclear. Here we have used Tat-linked membrane permeable peptide inhibitors of PKC to assess the general role of PKC and also of specific isoforms of PKC in the UTP induced contraction of rat mesenteric artery. We examined the effect of PKC inhibition on UTP induced contraction, increased cytoplasmic Ca2+ and reduction of K+ currents and found that PKC inhibition caused a relatively small attenuation of contraction but had little effect on changes in cytoplasmic Ca2+. UTP attenuation of both voltage-gated (Kv) and ATP-dependent (KATP) K+ currents was abolished when intracellular Ca2+ was decreased from 100 to 20 nM. PKC inhibition reduced slightly the ability of UTP to attenuate Kv currents but had no effect on KATP current inhibition. In conclusion, both UTP induced contraction of mesenteric artery and the inhibition of Kv and KATP currents of mesenteric artery smooth muscle cells by UTP are relatively independent of PKC activation; furthermore, the inhibition of both Kv and KATP currents requires intracellular Ca2+.
Content from these authors

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
Previous article Next article
feedback
Top