Journal of Smooth Muscle Research
Online ISSN : 1884-8796
Print ISSN : 0916-8737
ISSN-L : 0916-8737
Role of calcium channels and endothelial factors in nickel induced aortic hypercontraction in Wistar rats
Shahnawaz Ahmad WANILuqman Ahmad KHANSeemi Farhat BASIR
Author information

2018 Volume 54 Pages 71-82


Aim: To investigate the mechanism of nickel augmented phenylephrine (PE)-induced contraction in isolated segments of Wistar rat aorta. Materials and Methods: Effect of varying concentrations of nickel on PE-induced contraction were investigated in isolated segments of Wistar rat aorta using an organ bath system. Aortic rings were pre-incubated with verapamil (1 µM and 20 µM), gadolinium, apocynin, indomethacin or N-G-nitro-L-arginine methyl ester (L-NAME) separately before incubation with nickel. Results: Endothelium intact aortic rings incubated with 100 nM, 1 µM or 100 µM of nickel exhibited 80%, 43% and 28% increase in PE-induced contraction, respectively, while no such enhancing responses were observed in endothelium denuded aorta. Incubation of aortic rings with 1 µM and 20 µM verapamil suggested an involvement of influx of calcium through T-type calcium channels in smooth muscle cells, while aortic rings pre-incubated with gadolinium showed no role of store operated calcium channels in the nickel effect on PE-induced contractions. The enhancing effect of nickel on PE-induced contractions was inhibited by apocynin, indomethacin or L-NAME. Conclusion: Nickel has caused augmentation of PE-induced contractions as a result of the endothelial generation of reactive oxygen species (ROS) and cyclooxygenase 2 (COX2) dependent endothelium contracting factors (EDCFs), which increases the influx of extracellular calcium through T-type Ca2+ channels in smooth muscle cells.

Information related to the author

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
Previous article Next article