材料
Online ISSN : 1880-7488
Print ISSN : 0514-5163
ISSN-L : 0514-5163
論文
Design of Ceramics with Strong Adhesion to RNAs and Peptides with an Efficient Materials Informatics Technology
Tomio IWASAKI
著者情報
ジャーナル フリー

2021 年 70 巻 4 号 p. 336-343

詳細
抄録

Appropriate ceramics with strong adhesion to single-stranded ribonucleic acids (RNAs), which are used in biomedical and electronics devices, was selected by using an efficient materials-informatics technology based on a combination of an orthogonal array and a response-surface method. In this technology, at the first stage, important factors that significantly influence the adhesion strength were selected from various factors that characterize ceramic materials by using an orthogonal array with molecular simulations. As a result, the short-side and long-side lattice constants a and b were selected from four ceramic-material factors (a, b, the surface energy density, S, and the cohesive energy, C). At the second stage, the adhesion strength was described as a function of the selected important factors by using a response-surface method. From this function, the optimal solution (the best values for a and b) that made the adhesion strength maximum were obtained. The best values for a and b were obtained as 0.338 nm and 0.585 nm, respectively. At the third stage, the best ceramic material whose lattice constants were equal to the best values (a =0.338 nm and b=0.585 nm), which are the lattice constants of single-stranded RNA, was selected by use of the simulation results of lattice constants. As a result, CaO-5%MgO, ZrO2-37%MgO and HfO2-28%MgO, whose lattice constants were a =0.338 nm and b=0.585 nm, were selected as the best ceramic materials with the strongest adhesion to RNA. By applying the same technology to another application (the design of the ceramic material with strongest adhesion to a peptide that is a small part of proteins), CaO-9%NiO, ZrO2-34%NiO, and HfO2-26%NiO, whose lattice constants were close to peptide’s values (a =0.336 nm and b=0.582 nm), were selected.

著者関連情報
© 2021 日本材料学会
前の記事 次の記事
feedback
Top