写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
原著論文
ハイパースペクトルデータを用いた チャノキ(Camellia sinensis)のクロロフィル量推定
薗部 礼佐野 智人堀江 秀樹
著者情報
ジャーナル フリー

2017 年 56 巻 5 号 p. 234-243

詳細
抄録

Appearance, aroma and taste are important factors for assessing the quality of tea (Camellia sinensis) and then shading of tea is performed to increase chlorophyll content, which is an important factor for evaluating the appearance and good taste. Although some traditional approaches that require tremendous efforts for the collection of samples and laboratory chemical analyses have been applied, they are not feasible for long-term monitoring. In contrast, hyperspectral remote sensing is proven to be an efficient way for chlorophyll content monitoring. In this study, the three different approaches of kernel-based extreme learning machine (KELM), random forests (RF), and deep belief nets (DBN) were compared to assess the potential for estimating leaf chlorophyll contents from hyperspectral data with existing supervised learning models. Overall, regression models based on KELM yielded the highest performance, achieving a Root Mean Square (RMS) error of 0.20-0.56μg/cm2.

著者関連情報
© 2017 一般社団法人 日本写真測量学会
前の記事 次の記事
feedback
Top