写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
研究速報
ニューラルネットワークを利用した水位計測における 教師データの自動収集と追加学習方法
鈴木 利久前原 秀明口 倫裕平 謙二
著者情報
ジャーナル フリー

2020 年 59 巻 1 号 p. 41-48

詳細
抄録

As our previous work, we have reported a method of measuring the river water level from camera image by detecting water border positions based on the deep learning technology, targeting non-installation sites of water gauges.

For this time, we have considered an additional method which automatically collects training data from images taken by cameras installed by river sides and lets neural networks learn the classification between water images and non-water images. We also have estimated the effectiveness of our new method using actual river image data set. As the results, the true positive ratio of classification reached from 6 to 37 points improvement.

著者関連情報
© 2020 一般社団法人 日本写真測量学会
前の記事 次の記事
feedback
Top