写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
原著論文
空間的不均一性・連続性に関する正規化処理による地すべり移動体の深層生成
竹内 祐太朗山本 義幸古木 宏和宇津木 慎司吉田 一也中村 吉男
著者情報
ジャーナル フリー

2022 年 61 巻 1 号 p. 14-31

詳細
抄録

Landslide map is a thematic map used for disaster management. In recent years, there have been attempts to create landslide maps using artificial intelligence-based approaches. This study aimed to clarify the effectiveness of two normalization methods, derived from the spatial non-uniformity and continuity of landslide topography, for the deep generative model of landslide moving mass. We propose a normalization method for the supervised data to correct the spatial non-uniformity of landslides. The resulting supervised data, normalized by landslide area occupancy, improved the learning efficiency of the deep generative model. We also propose a normalization method for the inferenced results using the spatial continuity of landslides. The inferenced results, post-processed by employing our normalization method, showed reasonable distribution in comparison to the ground truth.

著者関連情報
© 2022 一般社団法人 日本写真測量学会
前の記事
feedback
Top