写真測量とリモートセンシング
Online ISSN : 1883-9061
Print ISSN : 0285-5844
ISSN-L : 0285-5844
RLS法に基づく欠測を多く含む時系列データの予測手法
瀬戸 要新井 康平
著者情報
ジャーナル フリー

1999 年 38 巻 5 号 p. 20-27

詳細
抄録
There are two parameter tuning algorithms, time update and measurement update algorithms for parameter estimation of Kalman filter. Two learning methods for parameter estimation of Kalman filter are proposed based on RLS (Recursive Least Square) method. One is the method without measurement update algorithm (RLS1) . The other one is the method without both time and measurement update algorithms (RLS2) . The methods are applied to the time series data of DMSP/SSM/I data with a plenty of missing data. It is found that the proposed RLS2 method shows smooth and fast convergence in learing process in comparison to the RLS1.
著者関連情報
© 社団法人 日本写真測量学会
前の記事 次の記事
feedback
Top