抄録
近年,金融分野においては,AI(artificial intelligence),とりわけ,機械学習を金融サービスや金融機関の業務に活用する動きが活発となっている.金融サービスでの利用としては,例えば,顧客応答,信用度評価等が代表的なものとして挙げられる.こうした機械学習の活用にあたっては,機械学習を実装する情報システムにおけるセキュリティ上のリスクを適切に評価し,それが許容できるレベルを上回っていると判断される場合には,リスクを低減するための対応を検討することが必要である.機械学習を実装するシステムは通常の情報システムの1 つとしてリスクの評価や対応を検討することになるが,機械学習特有の脆弱性によるリスクにも留意することが求められる.例えば,判定・予測エンジンの大量の入出力から訓練用のデータを推定しうるほか,人間の目では検知困難なノイズが付加された判定・予測用のデータに関して,判定・予測結果が有意に変化しうるなどの事例が報告されている.本稿では,こうした脆弱性に焦点を当てつつ,金融サービスに活用するAI のシステム,特に,機械学習を実装するシステムのモデル例を取り上げ,そのセキュリティ・マネジメントの方針や課題について解説する.