表面科学
Online ISSN : 1881-4743
Print ISSN : 0388-5321
ISSN-L : 0388-5321
特集:グラフェンの物性と応用
STM/STSによるグラフェン端の電子状態の観測
榎 敏明小林 陽介福井 賢一
著者情報
ジャーナル フリー

2008 年 29 巻 5 号 p. 304-309

詳細
抄録

The electronic structure of nanographene having open edges around its circumference crucially depends on its edge shape. The circumference of an arbitrary shaped nanographene sheet is described in terms of a combination of zigzag and armchair edges. According to theoretical suggestions, nanographene has a nonbonding π-electron state (edge state) localized in zigzag edges. This is reminiscent of the nonbonding π-electron state appearing in non-Kekulé-type aromatic molecules. The localized spins of the edge states can give rises to unconventional magnetism in nanographene, such as carbon-only ferromagnetism, magnetic switching phenomenon, spin glass state, etc. STM/STS investigations of well defined graphene edges which are hydrogen terminated in ultra-high vacuum condition confirm the presence of edge states around zigzag edges, in good agreement with theoretical works. The feature of the edge state depends on the detailed edge shape. The edge state in a short zigzag edge embedded between armchair edges becomes less localized due to the state mixing with the adjacent armchair edges. The electrons in the edge state in a finite-length zigzag edge are subjected to electron confinement effect.

著者関連情報

この記事はクリエイティブ・コモンズ [表示 - 非営利 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc/4.0/deed.ja
前の記事 次の記事
feedback
Top