The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Concurrent administration of ascorbic acid enhances liver tumor-promoting activity of kojic acid in rats
Masayoshi TakabatakeMakoto ShibutaniYasuaki DewaJihei NishimuraHironobu YasunoMeilan JinMasako MugurumaTaichi KonoKunitoshi Mitsumori
Author information

2008 Volume 33 Issue 2 Pages 127-140


We previously found that administration of ascorbic acid (AA) enhances the liver tumor-promoting activity of kojic acid (KA) in mice. To examine the reproducibility of these results in rats and the underlying mechanism of this effect, we employed a two-stage liver carcinogenesis model using male F344 rats. Two weeks after initiation with diethylnitrosamine (DEN), the animals received a diet containing 2% KA and drinking water with or without 5,000 ppm AA for a period of 7 weeks. A DEN-alone group was also established as a control. One week after the commencement of the administration, the animals were subjected to two-thirds partial hepatectomy. At the end of the experiment, the livers were analyzed immunohistochemically, and the mRNA expression level and extent of lipid peroxidation were measured. AA treatment enhanced the KA-induced tumor-promoting activity in terms of the number and area of liver cell foci that were positive for glutathione-S-transferase placental form. AA coadministration increased the number of hepatocytes positive for proliferating cell nuclear antigen and inversely decreased the number of TUNEL-positive cells. However, the increased level of thiobarbituric acid reactive substances resulting from KA treatment was suppressed by coadministration of AA. Gene expression analyses using low-density microarrays and real-time RT-PCR showed that coadministration of AA resulted in upregulation of genes related to cell proliferation and downregulation of those involved in apoptosis and/or cell cycle arrest. These results indicate that the concerted effects of AA on cell proliferation and apoptosis/cell cycle arrest probably through its antioxidant activity are involved in this enhancement.

Information related to the author
© 2008 The Japanese Society of Toxicology
Previous article Next article