The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Protective role of metallothionein in bone marrow injury caused by X-irradiation
Kiyoshi ShibuyaJunko S. SuzukiHideaki KitoAkira NaganumaChiharu TohyamaMasahiko Satoh
Author information

2008 Volume 33 Issue 4 Pages 479-484


In order to elucidate the role of metallothionein (MT) in preventing the adverse effects of X-ray irradiation, we examined the susceptibility of MT-I/II null mice to bone marrow injury caused by X-irradiation and effects of pretreatment with MT-inducing metals on X-ray injury. Eight-week-old male mice were exposed to a single bout of whole-body X-irradiation at a dose between 0.1 and 6.0 Gy. The numbers of leukocytes, reticulocytes with micronuclei (MNRET) in the blood, and polychromatic erythrocytes with micronuclei (MNPCE) in the bone marrow were determined 24 hr after X-irradiation. X-irradiation significantly decreased the total number of leukocytes in MT-I/II null mice and wild-type mice in a dose-dependent manner, but the total number of leukocytes was significantly lower in MT-I/II null mice than in wild-type mice at a low dose of irradiation, between 0.1 and 1.0 Gy. X-irradiation (0.1 and 0.5 Gy) significantly increased the appearance of MNRET and MNPCE in both strains, but the increase was greater in the MT-I/II null mice than in the wild-type mice. Additional groups of mice were pre-administered bismuth nitrate or zinc sulfate to induce MT in the bone marrow cells prior to X-irradiation; the X-ray injury was prevented by such treatments in wild-type mice only. Thus, the present results suggest that MT plays a protective role against a low dose of X-ray injury.

Content from these authors
© 2008 The Japanese Society of Toxicology
Previous article Next article