J-STAGE Home  >  Publications - Top  > Bibliographic Information

The Journal of Toxicological Sciences
Vol. 34 (2009) No. 4 August P 399-405

Language:

http://doi.org/10.2131/jts.34.399

Letter

Fincoal type fluorosis has only been reported from China, but its pathogenesis is unclear. Many people believe that fluorosis is associated with oxidative stress. Oxidative stress can be reduced at higher selenium (Se) level. Heat shock protein (HSP70) is the most conserved and induced against different stressors. The aim of this study is to detect the expression of HSP70 in fluorosis patients and explore the role of Se in fluorosis protection. The subjects were divided into four groups: “High Se + F group” (n = 50), “High F group” (n = 50), “High Se group” (n = 20) and “Control group” (n = 46). Expression of HSP70 was evaluated by Western blotting and real-time PCR techniques. The concentration of fluoride, content of Se in hair, activity of antioxidant enzymes (GSH-Px, SOD, CAT) and content of malondialdehyde (MDA) were determined. The relative amount of HSP70 gene transcription was significantly higher in “High Se + F group” than the other groups. The same results were found for expression of HSP70 protein to β-actin ratio. There was a significant difference between “High Se + F group” and “High F group” regarding MDA content and glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) activity. These results suggest that oxidative stress plays an important role in the pathogenesis of the Fincoal type fluorosis and it can be reduced at higher Se level.

Copyright © 2009 The Japanese Society of Toxicology

Article Tools

Share this Article