The Journal of Toxicological Sciences
Online ISSN : 1880-3989
Print ISSN : 0388-1350
ISSN-L : 0388-1350
Original Article
Purine receptor P2Y6 mediates cellular response to γ-ray-induced DNA damage
Shunta IdeNaoko NishimakiMitsutoshi TsukimotoShuji Kojima
Author information
JOURNAL FREE ACCESS

2014 Volume 39 Issue 1 Pages 15-23

Details
Abstract

We previously showed that nucleotide P2 receptor agonists such as ATP and UTP amplify γ-ray-induced focus formation of phosphorylated histone H2A variant H2AX (γH2AX), which is considered to be an indicator of DNA damage so far, by activating purine P2Y6 and P2Y12 receptors. Therefore, we hypothesized that these P2 receptors play a role in inducing the repair response to γ-ray-induced DNA damage. In the present study, we tested this idea by using human lung cancer A549 cells. First, reverse-transcription polymerase chain reaction (RT-PCR) showed that P2Y6 receptor is highly expressed in A549 cells, but P2Y12 receptor is only weakly expressed. Next, colony formation assay revealed that P2Y6 receptor antagonist MRS2578 markedly reduced the survival rate of γ-ray-exposed A549 cells. The survival rate was also significantly reduced in P2Y6-knock-down cells, compared with scramble siRNA-transfected cells. Since it has reported that phosphorylation of ERK1/2 after activation of EGFR via P2Y6 and P2Y12 receptors is involved in the repair response to γ-ray-induced DNA damage, we next examined whether γ-ray-induced phosphorylation of ERK1/2 was also inhibited by MRS2578 in A549 cells. We found that it was. Taken together, these findings indicate that purinergic signaling through P2Y6 receptor, followed by ERK1/2 activation, promotes the cellular repair response to γ-ray-induced DNA damage.

Content from these authors
© 2014 The Japanese Society of Toxicology
Previous article Next article
feedback
Top